Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microorganisms ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543679

RESUMEN

Aeromonas salmonicida is an important pathogen that causes furunculosis in trout and salmon with high morbidity and mortality, resulting in significant economic losses in aquaculture. Overuse of antibiotics has led to the continuous emergence of drug-resistant strains. Hence, there is an urgent need to find an alternative environmentally friendly antimicrobial agent. In this study, we isolated a virulent phage of A. salmonicida, named ASG01, which belongs to the Myoviridae family and maintains lytic activity at a pH value range from 4 to 12 and in the temperature range from 30 °C to 60 °C. The whole genomic sequence of ASG01 showed 82% similarity to Aeromonas phage pAh6-C. The cell wall hydrolase (Cwh)-encoding gene from the genome of ASG01 was predicted and heterologously expressed. Notably, in the absence of additional phage genes, endogenous expression of Cwh could lyse E. coli cells and greatly inhibit the growth of tested fish pathogenic bacteria. The lytic activity of Cwh was eliminated when the predicted active site was mutated. These results indicate that Cwh of ASG01 possessed excellent lytic activity and a wide antibacterial spectrum, suggesting its potential as an effective enzybiotic.

2.
Exp Mol Med ; 56(2): 441-452, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383581

RESUMEN

Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.


Asunto(s)
Ferroptosis , Helicobacter pylori , Neoplasias Gástricas , Humanos , Citotoxinas , Éteres Fosfolípidos
3.
Environ Res ; 248: 118213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280526

RESUMEN

Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.


Asunto(s)
Crassostrea , Humanos , Animales , Crassostrea/genética , Amoníaco , Aminoácidos , Ambiente , Ecosistema , Salinidad
4.
Mar Life Sci Technol ; 5(4): 467-477, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045547

RESUMEN

Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix-loop-helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00204-y.

5.
Innovation (Camb) ; 4(4): 100464, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485076

RESUMEN

Transcriptional plasticity interacts with natural selection in complex ways and is crucial for the survival of species under rapid climate change. How 3D genome architecture affects transcriptional plasticity and its interaction with genetic adaptation are unclear. We transplanted estuarine oysters to a new environment and found that genes located in active chromatin regions exhibited greater transcriptional plasticity, and changes in these regions were negatively correlated with selective signals. This indicates a trade-off between 3D active regions and selective signals in shaping plastic responses to a new environment. Specifically, a mutation, lincRNA, and changes in the accessibility of a distal enhancer potentially affect its interaction with the ManⅡa gene, which regulates the muscle function and survival of oysters. Our findings reveal that 3D genome architecture compensates for the role of genetic adaptation in environmental response to new environments and provide insights into synergetic genetic and epigenetic interactions critical for fitness-related trait and survival in a model marine species.

6.
Environ Res ; 236(Pt 1): 116614, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442261

RESUMEN

Regulatory variants in gene expression serve as bridges linking genetic variation and phenotypic plasticity. Environmental conditions typically influence the effects of regulatory variants on phenotypic plasticity; however, such genotype-by-environment interactions (G × E) are poorly understood. This study aimed to investigate the genetic basis of G × E in estuarine oyster (Crassostrea ariakensis), which is an important model animal for studying environmental adaption owing to its high plasticity and large intraspecific divergence. Genome-wide mapping of expression quantitative trait loci (eQTLs) for 23 environmental adaptive genes was performed for 256 estuarine oysters. We identified 1194 eQTL single nucleotide polymorphisms (eSNPs), including 433 cis-eSNPs in four genes and 722 trans-eSNPs in eight genes. The expression variation explanation of cis-eSNPs (9.95%) was significantly higher than that of trans-eSNPs (9.15%). We specifically showed cis- and trans-eSNPs with high linkage disequilibrium (LD) for Traf7, Slc6a5, Ggt, and Dap3. For example, we identified a cis-regulatory LD block containing 68 cis-eSNP and a trans-regulatory LD block, including 20 trans-eSNPs in Traf7. A high proportion (85%) of 40 vital eSNPs exhibited significant G × E effects. We identified crossing and nonparallel interactions of G × E, with the tag cis-eSNPs of Baat and Slc6a5 as representatives. Our results indicated that cis-eQTLs are highly conserved. This study provides insights into the understanding of adaptive evolutionary mechanisms and phenotypic response prediction to variable environments, as well as the genetic improvement for superior adaptive traits for genetic resource conservation and aquaculture.

7.
Ecotoxicol Environ Saf ; 263: 115197, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451098

RESUMEN

High-temperature stress caused by global climate change poses a significant threat to marine ectotherms. This study investigated the role of protein phosphorylation modifications in the molecular regulation network under heat stress in oysters, which are representative intertidal organisms that experience considerable temperature changes. Firstly, the study compared the extent of thermal damage between two congeneric oyster species, the relative heat-tolerant Crassostrea angulata (C. angulata) and heat-sensitive Crassostrea gigas (C. gigas), under sublethal temperature (37 °C) for 12 h, using various physiological and biochemical methods. Subsequently, the comparative proteomic and phosphoproteomic analyses revealed that high-temperature considerably regulated signal transduction, energy metabolism, protein synthesis, cell survival and apoptosis, and cytoskeleton remodeling through phosphorylation modifications of related receptors and kinases. Furthermore, the protein kinase A, mitogen-activated protein kinase 1, tyrosine-protein kinase Src, and serine/threonine kinase AKT, exhibiting differential phosphorylation modification patterns, were identified as hub regulators that may enhance glycolysis and TCA cycle to increase the energy supply, distribute protein synthesis, inhibit Caspase-dependent apoptosis activated by endogenous mitochondrial cytochrome release and maintain cytoskeletal stability, ultimately shaping the higher thermal resistance of C. angulata. This study represents the first investigation of protein phosphorylation dynamics in marine invertebrates under heat stress, reveals the molecular mechanisms underlying the differential thermal responses between two Crassostrea oysters at the phosphorylation level, and provides new insights into understanding phosphorylation-mediated molecular responses in marine organisms during environmental changes and predicting the adaptive potential in the context of global warming.


Asunto(s)
Crassostrea , Proteómica , Animales , Temperatura , Crassostrea/metabolismo , Respuesta al Choque Térmico , Metabolismo Energético
8.
Adv Sci (Weinh) ; 10(23): e2300898, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328448

RESUMEN

Anti-angiogenic therapy has long been considered a promising strategy for solid cancers. Intrinsic resistance to hypoxia is a major cause for the failure of anti-angiogenic therapy, but the underlying mechanism remains unclear. Here, it is revealed that N4-acetylcytidine (ac4C), a newly identified mRNA modification, enhances hypoxia tolerance in gastric cancer (GC) cells by promoting glycolysis addiction. Specifically, acetyltransferase NAT10 transcription is regulated by HIF-1α, a key transcription factor of the cellular response to hypoxia. Further, acRIP-sequencing, Ribosome profiling sequencing, RNA-sequencing, and functional studies confirm that NAT10 in turn activates the HIF-1 pathway and subsequent glucose metabolism reprogramming by mediating SEPT9 mRNA ac4C modification. The formation of the NAT10/SEPT9/HIF-1α positive feedback loop leads to excessive activation of the HIF-1 pathway and induces glycolysis addiction. Combined anti-angiogenesis and ac4C inhibition attenuate hypoxia tolerance and inhibit tumor progression in vivo. This study highlights the critical roles of ac4C in the regulation of glycolysis addiction and proposes a promising strategy to overcome resistance to anti-angiogenic therapy by combining apatinib with ac4C inhibition.


Asunto(s)
Neoplasias Gástricas , Humanos , Retroalimentación , Glucólisis , ARN Mensajero , Hipoxia , Acetiltransferasas N-Terminal
9.
Mar Biotechnol (NY) ; 25(3): 341-346, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37079122

RESUMEN

Increasing seawater temperatures pose a great threat to marine organisms, especially those settled in fluctuating intertidal areas. DNA methylation, which can be induced by environmental variation, can influence gene expression and mediate phenotypic plasticity. However, the regulatory mechanisms of DNA methylation in gene expression-mediated adaptation to environmental stress have rarely been elucidated. In this study, DNA demethylation experiments were conducted on a typical intertidal species, the Pacific oyster (Crassostrea gigas), to determine the direct role of DNA methylation in regulating gene expression and adaptability under thermal stress. The global methylation level and the expression level of DNA methyltransferases (DNMT1, DNMT3a) showed an accordant variation trend under high temperatures, supporting that the genomic methylation status was catalyzed by DNMTs. DNA methylation inhibitor 5-Azacytidine (5-Aza) effectively inhibited DNA methylation level and decreased methylation plasticity at the 6th hour in thermal conditions. In total, 88 genes were identified as candidate DNA methylation-regulated thermal response genes; they exhibited reduced expression plasticity in response to heat stress, possibly caused by the decreased methylation plasticity. Post-heat shock, the thermal tolerance indicated by the survival curve was reduced when oysters were pretreated with 5-Aza, meaning that DNA demethylation negatively affected thermal adaptation in oysters. This study provides direct evidence for the crucial role of DNA methylation in mediating stress adaptation in marine invertebrates and contributes to the theoretical foundations underlying marine resource conservation and aquaculture.


Asunto(s)
Crassostrea , Desmetilación del ADN , Animales , Crassostrea/genética , Calor , Respuesta al Choque Térmico/genética , Aclimatación
10.
Sci Total Environ ; 871: 162112, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764539

RESUMEN

Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.


Asunto(s)
Crassostrea , Ecosistema , Animales , Humanos , Metilación de ADN , Adaptación Fisiológica/genética , Crassostrea/genética , Fenotipo
11.
Evol Appl ; 16(2): 234-249, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36793677

RESUMEN

Comparing the responses of closely related species to environmental changes is an efficient method to explore adaptive divergence, for a better understanding of the adaptive evolution of marine species under rapidly changing climates. Oysters are keystone species thrive in intertidal and estuarine areas where frequent environmental disturbance occurs including fluctuant salinity. The evolutionary divergence of two sister species of sympatric estuarine oysters, Crassostrea hongkongensis and Crassostrea ariakensis, in response to euryhaline habitats on phenotypes and gene expression, and the relative contribution of species effect, environment effect, and their interaction to the divergence were explored. After a 2-month outplanting at high- and low-salinity locations in the same estuary, the high growth rate, percent survival, and high tolerance indicated by physiological parameters suggested that the fitness of C. ariakensis was higher under high-salinity conditions and that of C. hongkongensis was higher under low-salinity conditions. Moreover, a transcriptomic analysis showed the two species exhibited differentiated transcriptional expression in high- and low-salinity habitats, largely caused by the species effect. Several of the important pathways enriched in divergent genes between species were also salinity-responsive pathways. Specifically, the pyruvate and taurine metabolism pathway and several solute carriers may contribute to the hyperosmotic adaptation of C. ariakensis, and some solute carriers may contribute to the hypoosmotic adaptation of C. hongkongensis. Our findings provide insights into the phenotypic and molecular mechanisms underlying salinity adaptation in marine mollusks, which will facilitate the assessment of the adaptive capacity of marine species in the context of climate change and will also provide practical information for marine resource conservation and aquaculture.

12.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661848

RESUMEN

The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.


Asunto(s)
Crassostrea , Estearoil-CoA Desaturasa , Animales , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Temperatura , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple , Crassostrea/genética , Crassostrea/metabolismo
13.
Environ Res ; 216(Pt 2): 114585, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252835

RESUMEN

Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.


Asunto(s)
Crassostrea , Microbiota , Animales , Temperatura , Crassostrea/microbiología , Agua de Mar/química , Estaciones del Año , Bacterias/genética
14.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203295

RESUMEN

As the world's largest farmed marine animal, oysters have enormous economic and ecological value. However, mass summer mortality caused by high temperature poses a significant threat to the oyster industry. To investigate the molecular mechanisms underlying heat adaptation and improve the heat tolerance ability in the oyster, we conducted genome-wide association analysis (GWAS) analysis on the F2 generation derived from the hybridization of relatively heat-tolerant Crassostrea angulata ♀ and heat-sensitive Crassostrea gigas ♂, which are the dominant cultured species in southern and northern China, respectively. Acute heat stress experiment (semi-lethal temperature 42 °C) demonstrated that the F2 population showed differentiation in heat tolerance, leading to extremely differentiated individuals (approximately 20% of individuals die within the first four days with 10% survival after 14 days). Genome resequencing and GWAS of the two divergent groups had identified 18 significant SNPs associated with heat tolerance, with 26 candidate genes located near these SNPs. Eleven candidate genes that may associate with the thermal resistance were identified, which were classified into five categories: temperature sensor (Trpm2), transcriptional factor (Gata3), protein ubiquitination (Ube2h, Usp50, Uchl3), heat shock subfamily (Dnajc17, Dnaja1), and transporters (Slc16a9, Slc16a14, Slc16a9, Slc16a2). The expressional differentiation of the above genes between C. gigas and C. angulata under sublethal temperature (37 °C) further supports their crucial role in coping with high temperature. Our results will contribute to understanding the molecular mechanisms underlying heat tolerance, and provide genetic markers for heat-resistance breeding in the oyster industry.


Asunto(s)
Ostreidae , Termotolerancia , Humanos , Animales , Termotolerancia/genética , Estudio de Asociación del Genoma Completo , Hibridación de Ácido Nucleico , Hibridación Genética
15.
Front Immunol ; 13: 928628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059443

RESUMEN

The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.


Asunto(s)
Crassostrea , Herpesviridae , Animales , Antivirales , Virus ADN , Genómica , Herpesviridae/genética , Larva/genética
16.
Sci Total Environ ; 853: 158557, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36084780

RESUMEN

Hypoxia caused by global climate change and anthropogenic pollution has exposed marine species to increasing stress. Oxygen sensing mediated by prolyl hydroxylase (PHD) is regarded as the first line of defense under hypoxia exposure; however, the function of PHD in marine molluscan species remains unclear. In this study, we identified two PHD2 gene in the oyster Crassostrea gigas using phylogenetic tree analysis with 36 species, namely, CgPHD2A/B. Under hypoxia, the mRNA and protein expression of CgPHD2A displayed a time-dependent pattern, revealing a critical role in the response to hypoxia-induced stress. Observation of interactions between CgPHD2 and CgHIF-1α proteins under normoxia using co-immunoprecipitation and GST-pull down experiments showed that the ß2ß3 loop in CgPHD2A hydroxylates CgHIF-1α to promote its ubiquitination with CgVHL. With the protein recombination and site-directed mutagenesis, the hydroxylation domain and two target proline loci (P404A and 504A) in CgPHDs and CgHIF-1α were identified respectively. Moreover, the electrophoretic mobility-shift assay (EMSA) and luciferase double reporter gene assay revelaed that CgHIF-1α could regulate CgPHD2A expression through binding with the hypoxia-responsive element in the promoter region (320 bp upstream), forming a feedback loop. However, protein structure analysis indicated that six extra amino acids formed an α-helix in the ß2ß3 loop of CgPHD2B, inhibiting its activity. Overall, this study revealed that two CgPHD2 proteins have evolved, which encode enzymes with different activities in oyster, potentially representing a specific hypoxia-sensing mechanism in mollusks. Illustrating the functional diversity of CgPHDs could help to assess the physiological status of oyster and guide their aquaculture.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Crassostrea/metabolismo , Oxígeno/metabolismo , Filogenia , Hipoxia , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , ARN Mensajero/genética , Prolina/genética , Aminoácidos
17.
EBioMedicine ; 84: 104272, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36137412

RESUMEN

BACKGROUND: Exitron is a new type of non-canonical alternative splicing. Accumulating evidence implies exitron may have pathological function and contribute to another source of anti-tumor immunogenicity in various cancers. Its role in gastric cancer remains poorly understood. Large-scale, multi-omics analysis could comprehensively characterize the landscape of exitrons in gastric cancer, reveal undiscovered mechanism and hopefully identify molecular biomarkers for predicting immunotherapy response. METHODS: We collected datasets from five studies for analysis. RNA sequencing was used for exitron identification. Somatic mutations were detected by whole exome sequencing. Neopeptides were confirmed by proteome mass spectrometry. FINDINGS: 42174 gastric cancer-specific exitrons (GCSEs) were identified in 632 patients. GCSEs were clinically relevant to gender, age, Lauren type, tumor stage and prognosis. Tissue specificity test and pathogenic exitron prediction revealed their unique functional impact. GCSEs were mutually exclusive with mutations and demonstrated both unique and complementary function against TP53 mutation in gastric cancer. We further established splicing regulatory network to reveal upstream regulation of exitron splicing. We also evaluated the immunogenicity and diagnostic potential of GCSEs. Evidence of GCSEs-derived neopeptide expression was validated by whole proteome mass spectrometry. PD-1 and Siglecs were significantly increased in high neoantigen load patients. But exitron-related biomarkers failed to predict immunotherapy response, possibly due to small sample size and insufficient sequencing depth. INTERPRETATION: The present study provided a comprehensive multidimensional landscape of gastric cancer exitrons and underscores insights into underexplored mechanism in gastric cancer pathology. FUNDING: The Guangdong Provincial Key Laboratory of Precision Medicine for Gastroinstestinal Cancer (2020B121201004), the Guangdong Provincial Major Talents Project (No. 2019JC05Y361) and National Natural Science Foundation of China (grant number:82172960 and 81872013).


Asunto(s)
Neoplasias Gástricas , Antígenos de Neoplasias , Humanos , Mutación , Receptor de Muerte Celular Programada 1/genética , Proteoma/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
18.
Genomics ; 114(4): 110413, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716821

RESUMEN

The condition index (CI) is an economically important tool for assessing the quality of oysters, such as the Pacific oyster Crassostrea gigas. However, little is known about the mechanisms that underlie differences in CI between different C. gigas populations. In this study, we integrated transcriptomic and metabolomic profiling to investigate the mechanisms that underlie the differences between high- and low-CI groups in one- and two-year-old populations of C. gigas. The results indicate that differences in CI were associated with the regulation of growth-related genes, the FoxO signaling pathway, and the complex regulation of carbohydrate, lipid, amino acid, and energy metabolism. Moreover, the mechanisms underlying these differences differed between the populations. This study is the first to elucidate the molecular and chemical mechanisms associated with CI, and the results will be helpful for breeding higher quality oysters.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Crassostrea/metabolismo , Metabolómica , Transcriptoma
19.
Genes (Basel) ; 13(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35627318

RESUMEN

Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of Triosteum and analyzed 18 chloroplast genomes, trying to explore the sequence variations and phylogeny of genus Triosteum in the order Dipsacales. The chloroplast genomes of the genus Triosteum ranged from 154,579 bp to 157,178 bp, consisting of 132 genes (86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Comparative analyses and phylogenetic analysis supported the division of Dipsacales into two clades, Adoxaceae and six other families. Among the six families, a clade of Valerianaceae+Dipsacaceae was recovered as a sister to a clade of Morinaceae+Linnaeaceae. A closer relationship of T. himalayanum and T. pinnatifidum among three species was revealed. Our research supported that Loniceraferdinandi and Triosteum was closely related. Zabelia had a closer relationship with Linnaea borealis and Dipelta than Morinaceae. The divergence between T. sinuatum and two other species in Triosteum was dated to 13.4 mya.


Asunto(s)
Caprifoliaceae , Genoma del Cloroplasto , Caprifoliaceae/genética , Cloroplastos/genética , Dipsacales , Genómica , Humanos , Filogenia
20.
Mol Ther Oncolytics ; 24: 547-560, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35229032

RESUMEN

Association of tumor microenvironment and immune checkpoint (e.g., PD-L1) is important for immune escape, impacting chemotherapy and immunotherapy efficacy. We aimed to investigate biomarkers and therapeutic targets against treatment resistance in gastric cancer. Abundances of tumor-infiltrating immune cells were estimated in multiple datasets. Three patient subgroups (A, B, and C) were identified based on seven types of PD-L1- and IFN-γ-associated immune cells. Patients yielded increased prognosis from subgroup A to C (p = 0.027). Subgroup A was characterized by high activated CD4+ memory T cell infiltration, while more resting CD4+ memory T cells were in subgroup C. Further, a risk score was developed for prognostication. Lipoma preferred partner (LPP), as the hub gene in subgroup-related regulatory network, was upregulated (p < 0.01) and was associated with high risk score (p < 0.001) and poor survival (p < 0.05). Bioinformatics analyses and experiments found that LPP expressed restrictively in fibroblasts and associated with activated CD4+ memory T cell infiltration and tumor growth. High-LPP patients yielded fewer benefits from chemotherapy or immunotherapy, compared with the low-LPP group. We finally identified 28 compounds as sensitive drugs for high-LPP patients. Our findings suggested LPP might be a biomarker for treatment response and therapeutic target in gastric cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...